Rain gauge

From BoSL Wiki
Revision as of 14:40, 24 March 2022 by Ephmlab (talk | contribs)
Jump to navigation Jump to search

This section shows the journey for making our 3D print rain gauge!

Design journey

We didn't start from scratch - we work on Suromark's version (referred as original design in the following) and we did some changes to that:

First, we noticed that the tipping bucket can get stuck to the pivot if operated overnight, so we changed the flipper with 0.6 mm clearance. Secondly, we noticed that not all of the water in the bucket can escape when tipping. We compared with the standard tipping bucket rain gauge design, and we added a sharp edge and made some "swale" in the bucket to help divert water when tipping:

Thirdly, we found water can be soaked into the tipping bucket during long-time operation so we changed the 3D print from 30% infill to 100% infill;

In the end, we found that the tipping volume can change from time to time. We found during the overnight operation, a small amount of water from splashing or dripping can stay on the rain gauge base, which probably increases the friction between the base and bucket, therefore influencing the tipping volume. In that case, we changed the base design - to make water can easily escape so the tipping volume is consistent.

3D print files

Thanks Stephen for designing and editing the files!

File:Funnel.stl

File:Seesaw.stl

File:Baseplate.stl

Nano Board code

Thanks Luke(Baiqian) Shi for the coding :)

File:Nano Rainguage Sender.ino

Assembly instructions

The following video outlines the process required to assemble the gauge and to connect it to a logging system.

Application

We have used these rain gauges in Xixi Shi's lab-wetlands to monitor the outflow rate. There are 6 wetlands in total, and we have equipped each wetland outlet with a rain gauge to monitor the outflow rate.

This is the calibration for each rain gauge tipping bucket:

Rain gauge tipping volume(ml) Feb 16 3pm Feb 17 11am overnight difference (%)
R1 2.8 2.8 2
R2 2.9 2.9 2
R3 2.8 3.1 9
R4 2.9 3.1 7
R5 3 3 -1
R6 3 2.9 2